It's very interesting that the parallel curve of parabola is not parabola..you can draw a parabola on your paper and use pen to go on by the line; you will see the parallel of the parabola will cross itself, so that's true the parallel of the parabola is not parabola; It's same to circle and sin curve;
Here is a useful formula to calculate the parallel curve and curvature and the radius of the curvature:
![X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sKPW7uwXWx-HsRa-ECBHjI4rT8LaFA9JYArItzxoWBEEnQxLgc5UpLBLKS4DJcl6KumrFH7LcBXb92zw15oe-c79dZ00j4BnQnm9Vh0lIr2FCZtpGgRP9vIXUl7WEOvAIayQftFivhxMuqX0jl=s0-d)
![Y[x,y]=y-\frac{ax'}{\sqrt {x'^2+y'^2}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ukc52DQJPe64fO-by3apzZnjDXEobc4Lk21kcX01r_Jy7VqQXHBBcUaD9VtA6vOayZKDmh2tGy6N3kTBZgrlB2uzAl4jDTUwI261SmD4SWXvICy0db01AKZUi1Xol-H73J_bqPIB0U8bIPQtFaHQ=s0-d)
Here y=f(t);x=g(t); X and Y are coordinate of the parallel curve.
See more:
http://en.wikipedia.org/wiki/Parallel_curvehttp://www.jstor.org/stable/3027202?seq=5
No comments:
Post a Comment