It's very interesting that the parallel curve of parabola is not parabola..you can draw a parabola on your paper and use pen to go on by the line; you will see the parallel of the parabola will cross itself, so that's true the parallel of the parabola is not parabola; It's same to circle and sin curve;
Here is a useful formula to calculate the parallel curve and curvature and the radius of the curvature:
![X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uy80itvrhrsPkpHeRpLsLudWgvA6B9NNGsirh4iRfgSb6hIUz61lqzphbOOlkcnJLhQzmwcOf8rmfiUq3vA2tnSdH-lgNpo7kXVQPfiHeIE9BsBN6mBegXCLG_2hwcdIcD0qXYkv4ppzAeK3-D=s0-d)
![Y[x,y]=y-\frac{ax'}{\sqrt {x'^2+y'^2}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uuFvbaq4NSgPhLY2sV18dDTxXcxCuZYyS2XwqTyyYRdzYxEMwYRFAMwjO2R21teYifV97QaeRsH_y1rElH8lK06iA7P5XxrG7HuUekSGBiEWXdvQVk2Zb8HbpYTFoDwmDCYVlK9Mh154yeWBHcQA=s0-d)
Here y=f(t);x=g(t); X and Y are coordinate of the parallel curve.
See more:
http://en.wikipedia.org/wiki/Parallel_curvehttp://www.jstor.org/stable/3027202?seq=5
No comments:
Post a Comment